GRAM I	ORM	JLA	MASS
--------	-----	-----	------

Name_

Determine the gram formula mass (the mass of one mole) of each compound below.

1. KMnO₄

2. KCl _____

3. Na₂SO₄

4. Ca(NO₃)₂

5. Al₂(SO₄)₃

6. (NH₄)₃PO₄

7. CuSO₄•5H₂O _____

8. Mg₃(PO₄)₂ Woled southern and a second south south southern and second souther

9. Zn(C₂H₃O₂)₂•2H₂O _____

11. H₂CO₃

12. Hg₂Cr₂O₇

13. Ba(CIO₃)₂

14. Fe₂(SO₃)₃

15. NH₄C₂H₃O₂

MO	LES	AND	MA	SS
			BASE	

Determine the number of moles in each of the quantities below.

1. 25 g of NaCl

2. 125 g of H₂SO₄

3. 100. g of KMnO₄

4. 74 g of KCI

5. 35 g of CuSO₄•5H₂O

Determine the number of grams in each of the quantities below.

1. 2.5 moles of NaCl

2. 0.50 moles of H₂SO₄

3. 1.70 moles of KMnO₄

4. 0.25 moles of KCI

5. 3.2 moles of CuSO₄•5H₂O

		ANIB	MOLL	INAE
JUE	MOLE	AND	AOL	PIAIE

Name	
	THE RESERVE OF THE PARTY OF THE

For gases at STP (273 K and 1 atm pressure), one mole occupies a volume of 22.4 L. What volume will the following quantities of gases occupy at STP?

1. 1.00 mole of H₂

2. 3.20 moles of O₂

3. 0.750 mole of N₂

4. 1.75 moles of CO₂

5. 0.50 mole of NH₃

6. 5.0 g of H₂

7. 100. g of O₂

8. 28.0 g of N₂

9. 60. g of CO₂

10. 10. g of NH₃

THE MOLE AND AVOGADRO'S NUMBER

Name __

One mole of a substance contains Avogadro's Number (6.02 x 10²³) of molecules.

3. 3.20 moles of Q ₂ 3. 0.750 mole of N ₃
4 1.75 moles of CO ₂
1843 - Stone Ballo 1
ow?
7. 100. g of O ₂
8. 28.0 g of N ₃
- 100 http://www.

MIXED	MOLE	PRO	BLEMS
-------	------	-----	-------

Solve the following problems.

1. How many grams are there in 1.5 x 10^{25} molecules of CO_2 ?

 $_{2}$. What volume would the $CO_{_{2}}$ in Problem 1 occupy at STP?

3. A sample of NH₃ gas occupies 75.0 liters at STP. How many molecules is this?

4. What is the mass of the sample of NH₃ in Problem 3?

5. How many atoms are there in 1.3×10^{22} molecules of NO_2 ?

 $\rm 6. \ \ A~5.0~g$ sample of $\rm O_2$ is in a container at STP. What volume is the container?

7. How many molecules of $\mathrm{O_2}$ are in the container in Problem 6? How many atoms of oxygen?

PERCENTAGE COMPOSITION

Determine the percentage composition of each of the compounds below.

1. KMnO₄

2. HCI

3. Mg(NO₃)₂

4. $(NH_4)_3PO_4$

5. Al₂(SO₄)₃

Solve the following problems.

- How many grams of oxygen can be produced from the decomposition of 100.
 of KClO₃?
 - 7. How much iron can be recovered from 25.0 g of Fe_2O_3 ?
 - 8. How much silver can be produced from 125 g of Ag₂S?

DETERMININ	1G
EMPIRICAL	FORMULAS

What is the empirical formula	(lowest whole number ratio) of the compounds below?
-------------------------------	----------------------------	---------------------------

1. 75% carbon, 25% hydrogen

2. 52.7% potassium, 47.3% chlorine

3. 22.1% aluminum, 25.4% phosphorus, 52.5% oxygen

4. 13% magnesium, 87% bromine

5. 32.4% sodium, 22.5% sulfur, 45.1% oxygen

6. 25.3% copper, 12.9% sulfur, 25.7% oxygen, 36.1% water

DETERMINING MOLECULAR FORMULAS (TRUE FORMULAS)

Mana	
Name	

Solv	ve the problems below.
1.	The empirical formula of a compound is NO_2 . Its molecular mass is 92 g/mol. What is its molecular formula?
-	
2.	The empirical formula of a compound is CH_2 . Its molecular mass is 70 g/mol. What is its molecular formula?
	a 99 1% eluminum, 25.4% phosphorus, ucos sus san
3.	A compound is found to be 40.0% carbon, 6.7% hydrogen and 53.5% oxygen. Its molecular mass is 60. g/mol. What is its molecular formula?
	4, 13% magnesium, 87% brominé
4.	A compound is 64.9% carbon, 13.5% hydrogen and 21.6% oxygen. Its molecular mass is 74 g/mol. What is its molecular formula?
	6 38.4% sodium, 22.5% sulfur, 45.1% oxygen
5.	A compound is 54.5% carbon, 9.1% hydrogen and 36.4% oxygen. Its molecular mass is 88 g/mol. What is its molecular formula?

COMPOSITION OF HYDRATES	Name
A hydrate is an ionic compound with water molecules loosely bonded to its crystal structure. The water is in a specific ratio to each formula unit of the salt. For example formula CuSO ₄ •5H ₂ O indicates that there are five water molecules for every one formula of CuSO ₄ . Answer the questions below.	

JI III	
1.	What percentage of water is found in CuSO ₄ •5H ₂ 0?
2.	What percentage of water is found in Na ₂ S•9H ₂ 0?
3.	A 5.0 g sample of a hydrate of BaCl ₂ was heated, and only 4.3 g of the anhydrous salt remained. What percentage of water was in the hydrate?
4.	A 2.5 g sample of a hydrate of Ca(NO ₃) ₂ was heated, and only 1.7 g of the anhydrous salt remained. What percentage of water was in the hydrate?
5.	A 3.0 g sample of Na ₂ CO ₃ •H ₂ 0 is heated to constant mass. How much anhydrous salt remains?
6.	A 5.0 g sample of $Cu(NO_3)_2 \bullet nH_2 0$ is heated, and 3.9 g of the anhydrous salt remains. What is the value of n?

BALANCING CHEMICAL EQUATIONS Name ____

Rewrite and balance the equations below.

1.
$$N_2 + H_2 \rightarrow NH_3$$

3. NaCl +
$$F_2 \rightarrow NaF + Cl_2$$

4.
$$H_2 + O_2 \rightarrow H_2O$$

5.
$$AgNO_3 + MgCl_2 \rightarrow AgCl + Mg(NO_3)_2$$

6.
$$AIBr_3 + K_2SO_4 \rightarrow KBr + Al_2(SO_4)_3$$

7.
$$CH_4 + O_2 \rightarrow CO_2 + H_2O$$

8.
$$C_3H_8 + O_2 \rightarrow CO_2 + H_2O$$

9.
$$C_8H_{18} + O_2 \rightarrow 1O_2 + H_2O$$

11.
$$P + O_2 \rightarrow P_2O_5$$

12. Na +
$$H_2O \rightarrow NaOH + H_2$$

perfected a 0.1% CO of to clamber $0.8.4.3$

13.
$$Ag_2O \rightarrow Ag + O_2$$

14.
$$S_8 + O_2 \rightarrow SO_3$$

15.
$$CO_2 + H_2O \rightarrow C_6H_{12}O_6 + O_2$$

17.
$$HCl + CaCO_3 \rightarrow CaCl_2 + H_2O + CO_2$$

WORD	EQUATIONS
------	------------------

Write the word equations below as chemical equations and balance.

1. zinc + lead (II) nitrate yield zinc nitrate + lead

2. aluminum bromide + chlorine yield aluminum chloride + bromine

 sodium phosphate + calcium chloride yield calcium phosphate + sodium chloride

4. potassium chlorate when heated yields potassium chloride + oxygen gas

5. aluminum + hydrochloric acid yield aluminum chloride + hydrogen gas

6. calcium hydroxide + phosphoric acid yield calcium phosphate + water

7. copper + sulfuric acid yield copper (II) sulfate + water + sulfur dioxide

8. hydrogen + nitrogen monoxide yield water + nitrogen

CLASSIFICATION OF CHEMICAL REACTIONS

Name ___

Classify the reactions below as synthesis, decomposition, single replacement (cation anionic) or double replacement.

1. $2H_2 + O_2 \rightarrow 2H_2O$

2. $2H_2O \rightarrow 2H_2 + O_2$

3. $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$

GENORIO HIDIGOS

4. $2CO + O_2 \rightarrow 2CO_2$

artivietoristo mulantos. M.

5. $2HgO \rightarrow 2Hg + O_2$

6. $2KBr + Cl_2 \rightarrow 2KCl + Br_2$

7. $CaO + H_2O \rightarrow Ca(OH)_2$

1 * eminimum sea

8. $AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$

9. $2H_2O_2 \rightarrow 2H_2O + O_2$

10. $Ca(OH)_2 + H_2SO_4 \rightarrow CaSO_4 + 2H_2O$

PREDICTING PRODUCTS OF CHEMICAL REACTIONS

Name	

Predict the products of the reactions below. Then, write the balanced equation and classify the reaction.

- 1. magnesium bromide + chlorine
- 2. aluminum + iron (III) oxide
- 3. silver nitrate + zinc chloride
- 4. hydrogen peroxide (catalyzed by manganese dioxide)
- 5. zinc + hydrochloric acid
- 6. sulfuric acid + sodium hydroxide
- 7. sodium + hydrogen
- 8. acetic acid + copper