| ASSIGNING | OXIDATION | NUMBERS | |-----------|-----------|----------------| |-----------|-----------|----------------| | Vame | | |------|--| |------|--| Assign oxidation numbers to all of the elements in each of the compounds or ions below. | 1. HCI | 11. H ₂ SO ₃ | |--------------------------------------|------------------------------------| | | | | 2. KNO ₃ | 12. H ₂ SO ₄ | | 3. OH- | 13. BaO ₂ | | 4. Mg ₃ N ₂ | 14. KMnO ₄ | | 5. KCIO ₃ | 15. LiH | | 6. Al(NO ₃) ₃ | 16. MnO ₂ | | 7. S ₈ | 17. OF ₂ | | 8. H ₂ O ₂ | 18. SO ₃ | | 9. PbO ₂ | 19. NH ₃ | | 10. NaHSO ₄ | 20. Na | ### **REDOX REACTIONS** For the equations below, identify the substance oxidized, the substance reduced, the oxidizing agent, the reducing agent, and write the oxidation and reduction half reactions. oxidation half reaction: Mg° \rightarrow Mg⁺² + 2e⁻ reduction half reaction: 2e⁻ + Br₂° \rightarrow 2Br⁻ 1. $$2H_2 + O_2 \rightarrow 2H_2O$$ 2. Fe + $$Zn^{2+} \rightarrow Fe^{2+} + Zn^{2+}$$ 3. $$2AI + 3Fe^{+2} \rightarrow 2AI^{+3} + 3Fe$$ 4. Cu + $$2AgNO_3 \rightarrow Cu(NO_3)_2 + 2Ag$$ # BALANCING REDOX EQUATIONS Name _____ Balance the equations below using the half-reaction method. 1. $$Sn^{\circ} + Ag^{+} \rightarrow Sn^{+2} + Ag^{\circ}$$ 2. $$Cr^{\circ}$$ + Pb^{2+} \rightarrow Cr^{+3} + Pb° 3. $$KCIO_3 \rightarrow KCI + O_2$$ 4. $$NH_3 + O_2 \rightarrow NO + H_2O$$ 5. PbS + $$H_2O_2 \rightarrow PbSO_4 + H_2O$$ 6. $$H_2S$$ + HNO_3 \rightarrow S + NO + H_2O 7. $$MnO_2 + H_2C_2O_4 + H_2SO_4 \rightarrow MnSO_4 + CO_2 + H_2O_4$$ 8. $$H_2S$$ + H_2SO_3 \rightarrow S + H_2O 9. $$KIO_3$$ + H_2SO_3 \rightarrow KI + H_2SO_4 10. $$K_2Cr_2O_7$$ + HCl \rightarrow KCl + CrCl₃ + Cl₂ + H₂O Answer the questions below referring to the above diagram and a Table of Standard Electrode Potentials. | Which is more easily oxidized, metal, aluminum or lead? | | |---|--| |---|--| - 2. What is the balanced equation showing the spontaneous reaction that occurs? - 3. What is the maximum voltage that the above cell can produce? _____ - 4. What is the direction of electron flow in the wire? - 5. What is the direction of positive ion flow in the salt bridge? - 6. Which electrode is decreasing in size? _____ - 7. Which electrode is increasing in size? - 8. What is happening to the concentration of aluminum ions? - 9. What is happening to the concentration of lead ions?_____ - 10. What is the voltage in this cell when the reaction reaches equilibrium? _____ - 11. Which is the anode?_____ - 12. Which is the cathode?_____ - 13. What is the positive electrode?_____ - 14. What is the negative electrode? ## **ELECTROCHEMISTRY CROSSWORD** Name _____ ### **ACROSS** - 4. Unit of electrical potential - 6. Electrode where oxidation takes place - 7. Both atoms and ____ must be balanced in a redox equation. - 9. The anode in an electrochemical cell has this charge. - 10. Gain of electrons - 12. Voltage of an electrochemical cell when it reaches equilibrium - A substance that is oxidized is the _____ agent. - 14. Allows the flow of ions in an electrochemical cell ### DOWN - 1. The anode in an electrolytic cell has this charge. - 2. Another word for an electrochemical cell - 3. Electrode where reduction takes place - 5. Process of layering a metal onto a surface in an electrolytic cell - 8. Loss of electrons - 11. A substance that is reduced is the ____ agent.