DA	NE	LE	10	A	M	M
D	JI	LE	9	H	A	A

Boyle's Law states that the volume of a gas varies inversely with its pressure if temperature is held constant. (If one goes up, the other goes down.) We use the formula:

$$\boxed{P_1 \times V_1 = P_2 \times V_2}$$

Solve the following problems (assuming constant temperature).

- 1. A sample of oxygen gas occupies a volume of 250. mL at 740. torr pressure. What volume will it occupy at 800. torr pressure?
- 2. A sample of carbon dioxide occupies a volume of 3.50 liters at 125 kPa pressure. What pressure would the gas exert if the volume was decreased to 2.00 liters?
- 3. A 2.0 liter container of nitrogen had a pressure of 3.2 atm. What volume would be necessary to decrease the pressure to 1.0 atm?
- 4. Ammonia gas occupies a volume of 450. mL at a pressure of 720. mm Hg. Who volume will it occupy at standard pressure?
- 5. A 175 mL sample of neon had its pressure changed from 75 kPa to 150 kPa. What is its new volume?
- 6. A sample of hydrogen at 1.5 atm had its pressure decreased to 0.50 atm producing a new volume of 750 mL. What was its original volume?
- 7. Chlorine gas occupies a volume of 1.2 liters at 720 torr pressure. What volume will i occupy at 1 atm pressure?
- 8. Fluorine gas exerts a pressure of 900. torr. When the pressure is changed to 1.50 at its volume is 250. mL. What was the original volume?

		FAI	E A SAF
AL	ADI	FD	LAW
	A 2 4 W		

Name	

Charles' Law states that the volume of a gas varies directly with the Kelvin temperature, assuming that pressure is constant. We use the following formulas:

$$\frac{V_1}{T_1} = \frac{V_2}{T_2} \quad \text{or} \quad V_1 \times T_2 = V_2 \times T_1$$

$$K = {^{\circ}C} + 273$$

Solve the following problems assuming a constant pressure.

- A sample of nitrogen occupies a volume of 250 mL at 25° C. What volume will it occupy at 95° C?
- 2. Oxygen gas is at a temperature of 40° C when it occupies a volume of 2.3 liters. To what temperature should it be raised to occupy a volume of 6.5 liters?
- 3. Hydrogen gas was cooled from 150° C to $5\overline{0}^{\circ}$ C. Its new volume is 75 mL. What was its original volume?
- 4. Chlorine gas occupies a volume of 25 mL at 300 K. What volume will it occupy at 600 K?
- 5. A sample of neon gas at $5\overline{0}^{\circ}$ C and a volume of 2.5 liters is cooled to 25° C. What is the new volume?
- 6. Fluorine gas at 300 K occupies a volume of 500 mL. To what temperature should it be lowered to bring the volume to 300 mL?
- 7. Helium occupies a volume of 3.8 liters at -45° C. What volume will it occupy at 45° C?
- 8. A sample of argon gas is cooled and its volume went from 380 mL to 250 mL. If its final temperature was -55° C, what was its original temperature?

COMBINED GAS LAW

Name ____

In practical terms, it-is often difficult to hold any of the variables constant. When there is a change in pressure, volume and temperature, the combined gas law is used.

$$\frac{P_1 \times V_1}{T_1} = \frac{P_2 \times V_2}{T_2}$$
 or $P_1 V_1 T_2 = P_2 V_2 T_1$

Complete the following chart.

lliw	Provide to the	V ₁	T ₁	P ₂	V ₂	T ₂
-1 stati	1.5 atm	3.0 L	2Ō° C	2.5 atm	ov da 98° C°	3Ō° C
2	720 torr	256 mĻ	25° C	re should it bit	250 mL	5Ō° C
3	600 mmHg	2.5 L	22° C	760 mmHg	1.8 L	ENT Z
4	ioo ii liliy emu	750 mL	0.0° C	2.0 atm	500 mL	25° C
5	95 kPa	4.0 L	shillov ə bn	101 kPa	6.0 L	471 K or 198° C
6	650. torr	Driw () AT-)	100° C	900. torr	225 mL	15Ō° C
7	850 mmHg	1.5 L	15° C	i ip emulav s	2.5 L	3Ō° C
8	125 kPa	125 mL		100 kPa	100 mL	75° C

DALTON'S LAW OF PARTIAL PRESSURES

Dalton's Law says that the sum of the individual pressures of all the gases that make up a mixture is equal to the total pressure or : $P_T = P_1 + P_2 + P_3 + \dots$ The partial pressure of each gas is equal to the mole fraction of each gas x total pressure.

$$P_T = P_1 + P_2 + P_3 + \dots$$
 or $\frac{\text{moles gas}_x}{\text{total moles}} \times P_T = P_x$

Solve the following problems.

- 1. A 250. mL sample of oxygen is collected over water at 25° C and 760.0 torr pressure. What is the pressure of the dry gas alone? (Vapor pressure of water at 25° C = 23.8 torr)
- 2. A 32.0 mL sample of hydrogen is collected over water at $2\overline{0}^{\circ}$ C and 750.0 torr pressure. What is the volume of the dry gas at STP? (Vapor pressure of water at $2\overline{0}^{\circ}$ C = 17.5 torr)
- 3. A 54.0 mL sample of oxygen is collected over water at 23° C and 770.0 torr pressure. What is the volume of the dry gas at STP? (Vapor pressure of water at 23° C = 21.1 torr)
- 4. A mixture of 2.00 moles of H_2 , 3.00 moles of NH_3 , 4.00 moles of CO_2 and 5.00 moles of N_2 exerts a total pressure of $80\overline{0}$ torr. What is the partial pressure of each gas?
- 5. The partial pressure of F_2 in a mixture of gases where the total pressure is 1.00 atm is 300, torr. What is the mole fraction of F_2 ?

ID	EA	LG	AS		A	N
	EA		AU	No.		

Name	and a service of the

Use the Ideal Gas:Law below to solve the following problems.

PV = nRT where P = pressure in atmospheres
V = volume in liters
n = number of moles of gas
R = Universal Gas Constant
0.0821 L•atm/mol•K
I = Kelvin temperature

- How many moles of oxygen will occupy a volume of 2.5 liters at 1.2 atm and 25° C
 What volume will 2.0 moles of nitrogen occupy at 720 forr and 20° C?
 What pressure will be exerted by 25 g of CO₂ at a temperature of 25° C and a volu of 500 mL? _______
 At what temperature will 5.00 g of Cl₂ exert a pressure of 900. forr at a volume 750 mL? ______
 What is the density of NH₃ at 800 forr and 25° C? ______
 If the density of a gas is 1.2 g/L at 745. forr and 20° C, what is its molecular mass?
 How many moles of nitrogen gas will occupy a volume of 347 mL at 6680 forr and 27° C? ______
 What volume will 454 grams (1 lb) of hydrogen occupy at 1.05 atm and 25° C? ______
 Find the number of grams of CO₂ that exert a pressure of 785 forrs at a volume of 32.5 L and a temperature of 32° C. ______
- 10. An elemental gas has a mass of 10.3 g. If the volume is 58.4 L and the pressure 758 torrs at a temperature of 2.5° C, what is the gas?

GRAHAM'S LAW OF EFFUSION

Name ____

Graham's Law says that a gas will effuse at a rate that is inversely proportional to the square root of its molecular mass, MM. Expressed mathematically:

$$\frac{\text{rate}_{1}}{\text{rate}_{2}} = \sqrt{\frac{\text{MM}_{2}}{\text{MM}_{1}}}$$

Solve the following problems.

3

- 1. Under the same conditions of temperature and pressure, how many times faster will hydrogen effuse compared to carbon dioxide?
- 2. If the carbon dioxide in Problem 1 takes 32 sec to effuse, how long will the hydrogen take?
- 3. What is the relative rate of diffusion of NH₃ compared to He? Does NH₃ effuse faster or slower than He?
- $4\,$ –If the He in Problem 3 takes 20 sec to effuse, how long will $\mathrm{NH_3}$ take?
- An unknown gas diffuses 0.25 times as fast as He. What is the molecular mass of the unknown gas?