IONIC BONDING

lonic bonding occurs when a metal transfers one or more electrons to a nonmetal in effort to attain a stable octet of electrons. For example, the transfer of an electron sodium to chlorine can be depicted by a Lewis dot diagram.

Calcium would need two chlorine atoms to get rid of its two valence electrons.

Show the transfer of electrons in the following combinations.

1. K + F

2. Mg + I

3. Be + S

4. Na + O

5. Al + Br

COVALENT BONDING

Name _____

Covalent bonding occurs when two or more nonmetals share electrons, attempting to attain a stable octet of electrons at least part of the time. For example:

Note that hydrogen is content with 2, not 8, electrons.

Show how covalent bonding occurs in each of the following pairs of atoms. Atoms may share one, two or three pairs of electrons.

2.
$$F + F (F_2)$$

3.
$$O + O(O_2)$$

4.
$$N + N (N_2)$$

5.
$$C + O(CO_2)$$

6.
$$H + O(H_2O)$$

TYPES OF CHEMICAL BONDS

Name _____

Classify the following compounds as ionic (metal + nonmetal), covalent (nonmetal + nonmetal) or both (compound containing a polyatomic ion).

1. CaCl₂ _____

11. MgO ____

2. CO₂

12. NH₄CI

3. H₂O _____

13. HCl _____

4. BaSO₄ _____

14. KI _____

5. K₂O _____

15. NaOH ____

6. NaF _____

16. NO₂

7. Na₂CO₃ _____

17. AIPO

8. CH₄

18. FeCl₃

9. SO₃ ____

19. P₂O₅

10. LiBr _____

20. N₂O₃

SHAPES OF	MOLECU	LES
-----------	--------	-----

Name _____

Using VSEPR Theory, name and sketch the shape of the following molecules.

$_{ m N_2}$ VSEPR Theory, name and sketc	7. HF	N T
2. H ₂ 0 HO, HO	8. CH ₃ OH	2 H.O
B. CO ₂	9. H ₂ S	3. 00,
1. NH ₃	10. l ₂	A NH ₃
5. CH ₄	11. CHCl ₃	5. CH,
5. SO ₃	12. O ₂	,08 0

POLARIT	TY OF M	IOLECUI	LES
----------------	---------	---------	-----

Name_

1. N ₂		7. HF	M
2. H ₂ 0	HC R	8. CH ₃ OH	2 H.0
3. CO ₂	8,H	9. H ₂ S	3. CO,
4. NH ₃	2	10. l ₂	a NH ₃
5. CH ₄	II. CHCI,	11. CHCI ₃	5CH ₂
6. SO ₃		12. O ₂	C8 .8